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Abstract. The discrete distribution of homoclinic orbits has been investigated numerically and experimen-
tally in a CO2 laser with feedback. The narrow chaotic ranges appear consequently when a laser parameter
(bias voltage or feedback gain) changes exponentially. Up to six consecutive chaotic windows have been
observed in the numerical simulation as well as in the experiments. Every subsequent increase in the
number of loops in the upward spiral around the saddle focus is accompanied by the appearance of the
corresponding chaotic window. The discrete character of homoclinic chaos is also demonstrated through
bifurcation diagrams, eigenvalues of the fixed point, return maps, and return times of the return maps.

PACS. 05.45.Ac Low-dimensional chaos – 05.45.Pq Numerical simulations of chaotic models –
42.55.Lt Gas lasers including excimer and metal-vapor lasers

1 Introduction

Shilnikov chaos normally appears when a parameter is
varied towards the homoclinic condition associated with a
saddle focus [1–3]. Its peculiarity consists in an astonishing
regularity of the geometric trajectory in phase space. The
chaotic motion is characterized by homoclinic orbits in
the phase space with large fluctuations in the return time
associated with the sensitivity of the trajectory on the
initial approach to the unstable point. The return times
are erratic and only an average return period can be de-
fined. This suggests that an appropriate indicator of chaos
may be the distribution of the return times to a given
threshold, and the strength of chaos is associated with the
amount of decorrelation between successive returns [4]. If
the map of the return times is sufficient to characterize
the dynamics, then such a one-dimensional (1D) dissipa-
tive map corresponds to a 3D continuous dynamics. Thus,
the minimal model interpreting the homoclinic behavior is
a set of three coupled variables [3] with an unstable fixed
point having a pair of complex conjugate eigenvalues and
a real one, with the condition that the saddle quantity be
positive [2]. The appealing feature of such a model is that
a local linear stability analysis around the unstable point
provides a global description of the motion [5].
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Shilnikov chaos [3] was previously observed in many
systems, including a single mode lasers with feed-
back [6] and with a saturable absorber [7], the Belousov-
Zhabotinskii reaction [8], a glow discharge plasma [9],
an optically bistable device [10], a multimode laser [11],
and some other systems. The phase diagram of a single
mode CO2 laser with feedback observed by us over many
years [6] represents orbits characterized by a large damped
oscillation followed by a smaller growing oscillation. This
behavior seems to imply the coexistence of the two sad-
dle foci, one corresponding to an inward spiral, followed
by one corresponding to an outward spiral. We will see
that this conjecture is wrong and there is only one sad-
dle focus. In order to explore this question, we must make
reference to a sound model. Referring to our experiment,
a CO2 laser with feedback belonging to class-B lasers, is
described by two dynamical variables [12] (resonant pop-
ulation difference and light intensity) plus a third vari-
able corresponding to a voltage signal which provides a
feedback from the detector to the cavity loss modulator.
This 3D model was compatible with the observations of
giant spikes and the prediction of their return in terms
of a return time statistics with an associated 1D dissipa-
tive map [4]. However, the 3D model is unable to account
for all the features observed in the laser with feedback,
therefore a more detailed description is necessary. In fact,
the CO2 resonant transition is coupled to other rotational
levels, so that the complete model is 6D [13].

In this paper we study numerically and experimen-
tally the discrete behavior of Shilnikov chaos. We reveal
how changing a control parameter one can change the
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number of loops around the saddle focus. To our knowl-
edge, no accurate characterization of the discrete behavior
of Shilnikov chaos has been previously reported in physi-
cal systems, although the effect of discretization has been
described in the mathematical literature [14]. Recently,
we have reported on the first experimental observation of
the discrete character of Shilnikov chaos [15]. The present
work is primarily concerned with identifying regions of op-
eration in which homoclinic chaos can be observed, even
though such regions can be quite narrow. We show how
these regions depend on the control parameters. We also
characterize homoclinic chaos by the return map of the
return times, as introduced in [4] and later applied in [16].

The paper is organized as follows. In Section 2 we
describe the model equations and the results of numer-
ical simulations to characterize the discrete behavior of
Shilnikov chaos. In Section 3 we briefly comment on the
experimental setup of CO2 laser with feedback and de-
scribe the experimental results. Finally, the conclusions
are presented in Section 4.

2 Numerical simulations

2.1 Model equations

Standard laser theoretical models are based on the inter-
action of a single mode field with a resonant molecular
transition, thus requiring consideration of two molecular
levels. Applying an extra degree of freedom to account for
feedback, this will amount to a three-equation model [17].
However, homoclinic trajectory occurs over long times,
and during these times there is a consistent population
transfer from the rotational manifold of all other molec-
ular levels, not directly coupled to the field, towards the
resonant levels. This population transfer is accounted for
by a four-level system [13,18], leading to a six-equation
dynamical model as follows

·
x1 = k0x1(x2 − 1− k1 sin2 x6), (1)
·
x2 = −Γ1x2 − 2k0x1x2 + γx3 + x4 + P0, (2)
·
x3 = −Γ1x3 + x5 + γx2 + P0, (3)
·
x4 = −Γ2x4 + γx5 + zx2 + zP0, (4)
·
x5 = −Γ2x5 + zx3 + γx4 + zP0, (5)
·
x6 = −βx6 + βB0 − βf(x1), (6)

where f(x1) = Rx1/(1 + αx1) is the feedback function.
In these equations, x1 is the normalized photon number
proportional to the laser intensity, x2 is proportional to
the population inversion, x3 is proportional to the sum
of the populations on the two resonant levels, x4 and x5

are proportional, respectively, to difference and sum of the
populations of the rotational manifolds coupled to the las-
ing levels. We assume that each manifold contains z = 10
sublevels. The variable x6 is proportional to the feedback
voltage that affects the cavity loss parameter through
the relation k0(1 + k1 sin2 x6). The time t is rescaled to

Table 1. Parameter values used in simulations.

Γ1 10.0643 α 32.8767 k0 28.5714 γ 0.05
Γ2 1.0643 β 0.4286 k1 4.5556 P0 0.016
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Fig. 1. (a) Numerical phase space trajectory on the 3D pro-
jection of the 6D space. B0 = 0.1026. R = 160. It results
partly from embedding and partly from the plot of two differ-
ent degrees of freedom. (b) Corresponding time series of the
laser intensity and definitions of the characteristic times t01,
t10, t00, and t0. The large and small oscillations corresponding
to the inward and outward spiral loops are indicated by the
arrows.

τ = tγR, where γR is a suitable collision relaxation rate
(γR = 7× 105 s−1). The control parameters B0 and R are
proportional to the bias voltage and the gain of the feed-
back, respectively. The parameters Γ1, Γ2, γ, and β rep-
resent decay rates, α is a saturation factor of the feedback
loop, and P0 is the pump parameter. The fixed parameter
values are collected in Table 1. They correspond to accu-
rate measurements performed on the used experimental
system [13].

2.2 Phase space geometry

The dynamical behavior of the CO2 laser with feedback is
strongly determined by the presence of two fixed points in
the phase space shown in Figure 1a. For the laser inten-
sity which is the variable usually observed in the exper-
iment [4,6,12,15], these fixed points, defined as 0 and 1,
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are characterized, respectively, by a zero and non zero in-
tensities. The time evolution of the laser intensity is repre-
sented by an orbit in the phase space of the laser variables
winding around these two fixed points with the particular
feature of an inward spiral motion approaching point 1
and an outward spiral motion leaving the same point.

The trajectory shown in Figure 1a is the 3D projec-
tion of a bi-periodic Pnm oscillations evaluated by the 6D
model. The index n denotes the number of the loops in
the inward spiral while the index m is the number of the
outward spiral loops. The system of equations (1–6) pos-
sesses a homoclinic orbit Γ0 connecting fixed point 0 to
itself.

The most common time-dependent regime for the out-
put power of the laser with feedback is composed of co-
existing narrow large and small spikes repeating regularly
at a period T = t00 + t0 as shown in Figure 1b. The dura-
tion times associated with the inward and outward spirals
are called respectively t01 and t10 and the overall (return)
time of the homoclinic cycle is denoted as t00. After a time
interval t0 spent near point 0, the next homoclinic cycle
starts. By varying the control parameters one can change
the number of the loops n and m, or, in other words, the
type of periodicity. Each change in the number of the out-
ward spiral loops m is accompanied by a chaotic motion
Cj (j = 1, 2, 3, ...) [15]. The regime of Shilnikov chaos
may be described in the phase space through a quasi-
homoclinic orbit Γ1, leaving fixed point 1 and reinjected
into that point. This connection occurs within very nar-
row parameter range. In this regime the number of the
outward spiral loops depends on how close the trajectory
approaches fixed point 1 after the reinjection. Therefore,
at the chaotic regime the time t10 varies from one period
T of the homoclinic cycle Γ0 to the another. Theoreti-
cally, the number of quasi-homoclinic cycles Γ1 increases
without a limit as the system approaches the homoclinic
bifurcation. Thus, the fixed point 1 is responsible for ho-
moclinic chaos.

2.3 Eigenvalues

The dynamics of the system depends sensitively on the
relative values of the eigenvalues of the saddle focus lo-
cated in the origin 1. The inward spiral motion towards
the unstable saddle focus 1 is related to a non stationary
solution of the equation model characterized by a stable
manifold with complex eigenvalues (−ρ1± iω1). The fixed
point 1 has four real and two complex conjugates eigen-
values. These last two (ρ2 ± iω2) account for the unstable
manifold of this point. For a homoclinic orbit such as Γ1

associated with a saddle focus such as point 1, Shilnikov
showed that, if in the neighborhood of this point the char-
acteristic time of the flow following the focus directions is
the largest one (ρ2/λ2 > 1, where λ2 is the smallest real
eigenvalue), the system represents a chaotic behavior [3].
However, as was shown by Tresser [19], chaos may appear
even if this condition is not fulfilled. This happens if the
unstable and the stable manifolds are not perfectly con-
nected but close to form a homoclinic orbit.
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Fig. 2. Real part of the eigenvalue ρ2 of fixed point 1 versus
bias voltage B0 at R = 160.

In Figure 2 we show that the real part of the eigen-
value ρ2 increases monotonically with bias voltage B0,
while ρ1 remains constant, ρ1 = 3.27× 103 s−1. One can
observe the succession of periodic Pnm and chaotic win-
dows Cj as B0 is changed. The number j of a successive
chaotic regime is defined to be equal to the number of the
outward spiral loops m in a bi-periodic regime preceding
this chaotic window. The boundaries between periodic and
chaotic regimes are indicated in the figure by the vertical
dashed lines. We have added error bars within Cj ranges,
since the reported values are an average over several oc-
currences, i.e. over several homoclinic cycles Γ0. In the
periodic window between C3 and C4, the simultaneous
presence of different periods is represented by the broader
marks.

2.4 Bifurcation diagrams

Numerical bifurcation diagrams of the laser intensity with
respect to the control parameters R and B0 are shown
in Figures 3 and 4. For each parameter value successive
maxima of the x1 variable are plotted. This allows us to
characterize the discrete behavior of periodic and chaotic
orbits. The calculated diagrams are close to the experi-
mentally observed behavior.

As seen from the diagrams, the laser dynamics devel-
ops with a change in the parameter values in the following
way. At large R (Fig. 3) and small B0 (Fig. 4) the laser
operates in a cw (steady-state) regime. This behavior is
connected to the chaotic regime by a subharmonic cas-
cade, terminated by chaos around fixed point 1. At low
R (Fig. 3, regimes n = 1 99K 5) and high B0 (Fig. 4,
B0 > 0.12) only the inward spiral exists. This means that,
for these values of the parameters, fixed point 1 has no
effect on the laser dynamics, and hence chaos does not
appear. As seen from the figures, the increase in the gain
R leads to discrete increments of the number of the loops
n of fixed point 1, while the change in B0 does not result
in a change in n (see Fig. 4).
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Fig. 3. (a) Numerical bifurcation diagram of the laser intensity
with feedback gain R as a control parameter at B0 = 0.12.
(b) Enlarged part of the diagram.

At high R and low B0 a new outward spiral arises
around point 1. That is, at R > 180 (Fig. 3b) besides the
inward spiral around point 1, which by now has reached
the value n = 5, spirals around point 1 also appear. They
give rise to homoclinic chaos Cj located within some nar-
row parameter ranges. Away from these chaotic windows,
bi-periodic regimes Pnm take place. Between Pnm and
Pn(m+1) periodic states there always exists a chaotic state
Cj . The widths of periodic Pnm windows get smaller as
m increases. This explains why in experiments it is diffi-
cult to observe large m numbers: the width of the periodic
window becomes of the same order of magnitude as exper-
imental noise.

2.5 Periodicity

In Figure 5 we show how the number of loops depends on
the control parameters. We have found that the n-periodic
regions are distributed approximately equidistantly with
the feedback gain R (Fig. 5a), while m-periodic regions
and chaotic regions are separated exponentially with the
bias voltage B0 (Fig. 5b). Each steep change of m is ac-
companied by the very narrow chaotic regions Cj indi-
cated by the arrows, where j is the number of a chaotic
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Fig. 4. (a) Numerical bifurcation diagram of the laser inten-
sity with bias voltage B0 as a control parameter at R = 160.
(b) Enlarged part of the diagram.
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Fig. 6. Numerical return times for fixed points 0 and 1 versus
bias voltage B0 at R = 160.

state that corresponds to the number of the loops m
around fixed point 1. We have found up to 6 homoclinic
chaotic states, since the maximum observed loopsm was 6.

2.6 Return times

The return time maps are an extremely convenient tool for
analyzing homoclinic chaos [4,16]. Rather than looking at
the reconstructed phase space trajectory, the information
is derived directly from the time evolution of the signal.
In Figure 6 we show the dependence of the return times
on B0. One can see that t01 and t0 change monotonically
with B0 and hence they are not related to chaos. On the
contrary t10 and as a consequence t00, shows strong oscil-
lations as B0 changes and the chaotic regimes are char-
acterized by the coexistence of many t00 and t10 values
for the same B0. The deviation of these times increases
with j.

We recall (see [4,17]) that a map of the global return
times can be built by the local analysis around the sad-
dle focus. A map of the global return time in the chaotic
regime is made of many oscillations crossing the diagonal
straight line of the plane (tn+1, tn) (locus of fixed points)
at angles much larger than 45◦, thus showing very high
local expansion rates. As a result, tiny changes in a con-
trol parameter may induce dramatic changes in the range
of return times.

The numerical return map of return times (RMRT)
corresponding to chaos C5 is shown in Figure 7a. This
map is derived from the temporal evolution of the laser
intensity shown in Figure 7b. We consider the intersections
with the surface of constant intensity (x1 = 5.8 × 10−4)
that cuts all oscillations whenever dx1/dt < 0 [16]. Then
we determine the times ti between successive intersections.
All the RMRT, i.e., the plot ti vs. i+ 1, present a multi-
valued structure.
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Fig. 7. (a) RMRT (return map of return times) for C5 for
model equations (1–6). 5×105 points have been analyzed dur-
ing 70 ms. (b) Portion of the time series including x0

1 =
5.8× 10−4 at which the signal was sampled.

3 Experiment

3.1 Setup

The experiments reported on this paper have been carried
on a single mode CO2 laser with feedback. The experimen-
tal setup was already described elsewhere [17]. An intra-
cavity loss modulator is driven by a bias voltageB, which
acts as a control parameter, plus a signal feedback from
a detector inspecting the amount of output intensity, and
amplified by a factorA. A is the second control parameter.
Thus, the laser with feedback represents an autonomous
system, where the feedback provides an additional degree
of freedom, which is necessary to observe chaos.

The relationship between the parameter B0 in equa-
tion (6) and the experimental bias voltage B is B0 =
π(B − V0)/Vλ, where V0 = 100 V and Vλ = 4240 V.

3.2 Phase space diagram

The experimental phase diagram is shown in Figure 8.
One can see the very close similarity with the numerical
trajectory shown in Figure 1a. So far the previous experi-
ments and their interpretation have covered separately ei-
ther the occurrence of the giant spikes [6,17] or the small
oscillations around the saddle focus 1, as well as ways of
stabilizing them [18].
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feedback. Bias voltage B = 210 V. Feedback gain A = 2055.
The phase space is built by an embedding technique with ap-
propriate delays.
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3.3 Discretization of chaos

In Figure 9 we show how the number of loops, observed
experimentally, depends on the control parameters. One
can see that these experimental results qualitatively agree
with the numerical results shown in Figure 5. As in the cal-
culations we have found up to 6 homoclinic chaotic states
which are separated exponentially with the bias voltage
(see Fig. 9b).

The experimental RMRT corresponding to chaos C5 is
shown in Figure 10. As in the numerical simulations this
map is derived from the temporal evolution of the laser
intensity and represents a multi-valued structure. These
maps are quite different from those reported in [4], which
were taken setting a high threshold value, and thus report-
ing the occurrence of the highest spikes. In [4] no detail
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Fig. 10. Experimental RMRT for C5.

on the number of loops around saddle focus 1 could be
obtained.

4 Conclusions

The discrete behavior of homoclinic chaos has been stud-
ied numerically and experimentally in a CO2 laser with
feedback. We have shown that chaotic regions are sepa-
rated exponentially as a control parameter is varied. The
occurrence of a homoclinic window is accompanied by a
change in the number of loops m in the outward spiral
around the saddle focus 1 responsible for Shilnikov chaos.
Instead, the number of loops n in the inward spiral is not
associated with chaos and changes equidistantly with a
control parameter.

Furthermore, the performed return time analysis con-
firms the discrete character of homoclinic chaos, with a
satisfactory agreement between numerical and experimen-
tal results. This discrete character had already been ob-
served in Belousov-Zhabotinskii reaction [8], however the
exponential dependence of periodic and chaotic windows is
here demonstrated numerically and experimentally for the
first time. In conclusion, while previous works monitored
the overall return time [4] or stabilized fixed point 1 [13]
or just the first limit cycle around it [18], here for the
first time we provide the parameter value for the onset of
different number of loops around the saddle focus.
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8. F. Argoul, A. Arnéodo, P. Richetti, J. Chem. Phys. 84,
1367 (1987).

9. T. Braun, J.A. Lisboa, J.A.C. Gallas, Phys. Rev. Lett. 68,
2770 (1992).

10. R. Herrero, F. Boixader, G. Orriols, J.I. Rosell, F. Pi, Opt.
Commun. 112, 324 (1994).

11. E.A. Viktorov, D.R. Klimer, M.A. Karim, Opt. Commun.
113, 441 (1995).

12. F.T. Arecchi, in Instabilities and Chaos in Quantum Op-
tics, edited by F.T. Arecchi, R.G. Harrison (Springer-
Verlag, Berlin, 1987).

13. M. Ciofini, A. Labate, R. Meucci, M. Galanti, Phys. Rev.
E 60, 398 (1999).

14. P. Gaspard, G. Nicolis, J. Stat. Phys. 31, 499 (1983); P.P.
Glendinning, C.S. Sparrow, ibid. 35, 545 (1984); J.W.-J.
Beyn, in International. Series of Numerical Mathematics
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